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The saturated porous solid

Description of a porous solid

Porosity
A porous solid is superposition of a solid matrix and void space. Porosity is defined as the
ratio between the volume of pores and the total volume:

with respect to the initial volume φ = Vp
dΩ0

- Lagrangian

with respect to the current volume n = Vp
dΩ - Eulerian
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The saturated porous solid

Description of a porous solid
Variation of porosity

Considering ε = tr
(
ε
)
the volumetric part of the strain tensor:

φ = (1 + ε) n
If there is no deformation, the two quantities are equal.

The change of porosity after a deformation is defined as ϕ = φ− φ0

ϕ = Vp−V 0
p

dΩ0

The description as Lagrangian is more convenient(
ϕ = n (1 + ε)− n0 for the Eulerian description

)
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The saturated porous solid

Description of a porous solid
Structure of a porous solid

There exist 2 types of natural porous solids:
Sedimentary rocks and soils (limestones, sandstones, sand beds. . . )
The porous material is made by the compaction (+ cementation) of grains. Porous space is
the remaining space between the grains

Fractured rocks (granite)
The porosity consists of the fracture network crisscrossing the rock.
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The saturated porous solid

Description of a porous solid
Modeling of a porous solid

Naive description: bundle of capillary tubes

Notion of pores easy to understand and to relate to the pore size distribution
Easy to calculate hydrodynamic properties (Haagen-Poiseuille flow in each pores)

Results do not usually fit experimental data
Does not account for all the hysteretic behavior (capillary pressure . . . )
Does not take into account the connectivity between the pores
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The saturated porous solid

Description of a porous solid
Modeling of a porous solid

An important notion: tortuosity
Tortuosity is defined as the ratio of the path length between two points throughout the
porosity relative to the actual distance between these two points.

Several paths are possible to go from point A to point B. To define tortuosity we use the shortest one:

τ =
(

Lshortest path
LAB

)2

For a sample of porous medium, the tortuosity is defined as τ =
(
<λ>

L

)2
with < λ > the average length of

the fluid path and L the dimension of the sample
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The saturated porous solid

Description of a porous solid
Modeling of a porous solid

Less naive description: bundle of tortuous capillary tubes
The tubes are not straight anymore but have a length depending on the tortuosity of the
medium.

Same advantages as the bundle of capillary tubes
better fit to the experimental data. For a better result, one can also define a range

of tortuosity for example a different tortuosity for each class of pore size

Still not able to reproduce the hysteretic behavior
Still don’t take into account the connectivity between the class of pores.
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The saturated porous solid

Description of a porous solid
Modeling of a porous solid

Pores and pore throats

This representation grasps all the characteristics of the porous medium. Possible to change the geometry
(replace spheres by tetrahedron or cubes - replace cylinders by prisms with square, hexagonal, or triangular
section) and the connectivity (number of pore throats per pore).

Fits well to experimental results
Allows to take into account the hysteresis and the retention phenomena
Takes into account the connectivity of pores

difficult to relate to the "pore sizes"
more difficult to handle in real cases. Needs strong computational capacities.
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The saturated porous solid

Description of a porous solid
Vocabulary

The REV (representative elementary volume) is the elementary brick of a porous medium
small enough to be elementary → LREV � Lsample

big enough to be representative → LREV � Lheterogeneities

The characteristic length of heterogeneities is often the largest pore size.

Two types of deformation:
The deformation of the grains composing the matrix
The movement of the grains relative to each other (deformation of the porous space)

The porosity is filled with fluids (water, air, oil. . . )
when the porosity is filled with a single fluid the solid is said saturated
when several phases are present in the solid it is said unsaturated
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The saturated porous solid

Solving a poromechanical problem
State variables

The unknowns describing a poromechanical problem are divided into to parts: the
behavior of the solid matrix (stress/strain) and the behavior of the fluid(s) filling the
porosity

Symbol State variable Unit Number of independent components

ξ displacement m 3

σ stress tensor Pa 6

ε strain tensor - 6

φ porosity - 1

p fluid pressure Pa 1

m mass of fluid per unit volume kg.m−3 1

q fluid volume flow m3.s−1 3

ρ fluid density kg.m−3 1

A simple problem of poromechanics has 22 unknowns !
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The saturated porous solid

Solving a poromechanical problem
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The saturated porous solid

Solving a poromechanical problem
Equations needed

To solve the problem, we need to have a closed set of equations

ε = 1
2

(
∇ξ +∇tξ

)
∇ · σ + ρf = 0

m − ρφ = 0 the solid is saturated
ρ = ρ(p,T ) equation of state of the fluid
dm
dt = −∇ ·

(
ρq
)
conservation of mass

q → what is the law controlling the fluid displacement in the porosity ?
equation of state of the porous solid (link between stresses, strains, porosity and pore pressure of the fluid)

And boundary conditions

ξ or σ · n for the solid part

p or q · n for the fluid

If the fluid cannot leave the solid (impermeable boundaries) we are in undrained conditions.
If the fluid is free to leave the solid, we are in drained conditions.
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The saturated porous solid

Fluid equation of state

Perfect gas: PV = nRT ⇔ P = ρRT
M

with ρ the density, M the molar mass, R the perfect gas constant ( R = 8.314J.K−1.mol−1)

Van der Waals gas:
(
P − a

V 2
m

)
(Vm − b) = RT

Vm is the molar volume, a is the attraction factor and b is the covolume.

Supercritical fluid: P = RT
Vm−b −

aα
V 2
m+2bVl−b2

Peng-Robinson equation

with α defined as α =
(
1 + κ

(
1−
√
Tr
))2

and κ = 0.37464 + 1.54226ω− 0.26992ω2, ω is called the

acentric factor. a = 0.45724R2T2
c

Pc , b = 0.007780RTc
pc .

Liquid: dρ
ρ

= 1
K dp − αdT with α, the thermal volumetric dilation coefficient and K the bulk

modulus (for water K = 2GPa)
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The saturated porous solid

Saturated Poroelasticity

Basis postulate of poromechanics

the evolution of an homogeneous system is characterized by the same state variables as the
equilibrium. Equations of state between these variables are sufficient to describe the
behavior (for non reversible transformations, dissipation equations have to be added
depending on the speed of evolution of these state variables
If we consider a volume Ω composed of elementary volumes dΩ, the global behavior will be
the sum of the elementary behavior (additivity of the state variables)

To determine the equations of state for the porous solid we will use a thermodynamic averaged
calculation
The variation of the Helmholtz free energy of the system is:

dF ≤ σ : dεΩ0︸ ︷︷ ︸
Strain work

+
∑

i µidNi − SdT

≤ because of possible dissipation during the transformation
In volumetric notation (relative to dΩ0, Lagrangian) and for non-dissipative transformations (⇔
linear elasticity), we have:

df = σ : dε+
∑

i µidni − sdT
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The saturated porous solid

Saturated Poroelasticity

Helmholtz free energy of the skeleton
The skeleton is the porous solid without the fluid ( ⇔ solid matrix)

dfsk = df − dffluid

The Helmholtz free energy of the fluid is:

dffluid = −pdφ+ sfluiddT +
∑

i µidni

The Helmholtz free energy of the skeleton is finally:

dfsk = σ : dε+ pdϕ− sskdT

σ : dε work of the external stress. σ intensive /ε extensive

pdϕ work of the fluid within the porosity. p intensive/ϕ extensive (dφ = dϕ)
ssk = s − sfluid

The mechanical work undergone by the porous solid is then dW = σ : dε+ pdϕ

It is composed of the mechanical deformation of the matrix and the action of the fluid on the pore walls
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The saturated porous solid

Saturated Poroelasticity
Energy evolution of the porous matrix

Helmholtz free energy of the skeleton and Legendre transform
dfsk = σ : dε+ pdϕ− sskdT

It is easier to work at constant pressure than at constant porosity:
ψsk = fsk − pφ⇒ dψsk = σ : dε− φdp − sskdT

We can separate the volumetric and deviatoric strain (uncoupled behavior)

dψsk = σdε+ s : de − φdp − sskdT

with σ = 1/3tr(σ) and ε = tr(ε).

The idea is now to use this expression to determine the relations between stress, strain,
porosity and pressure
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The saturated porous solid

Saturated Poroelasticity

Fundamental equation of isotropic linear poroelasticity

dσ = A1dε + A2dp + A3dT
dϕ = A4dε + A5dp + A6dT
dsij = A6deij
dssk = A7dε + A8dp + A9dT

⇒

σ − σ0 = Kε− bp − αK (T − T0)
ϕ = bε + p/N − αφ (T − T0)

sij − s0ij = 2Geij

ssk = ss0 + αKε− αφp + C (T − T0) /T0

The exact differential of the skeleton free energy gives

σ = ∂ψsk
∂ε ; σ = ∂ψsk

∂ε ; φ = − ∂ψsk
∂p ; ssk = − ∂ψsk

∂T

Maxwell relation gives A2 = −A4

K bulk modulus
G shear modulus
b Biot coefficient
N Biot Modulus
α and αφ volumetric thermal dilation of the porous solid and the porous space
C heat capacity
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The saturated porous solid

Microporoelasticity

Stress and strain separation

ε = Ω−Ω0
Ω0

. Let εsk be the volume strain of the solid skeleton. We then have:

ε = (1− φ0) εsk + ϕ ϕ = ϕ
φ0
φ0

The deformation of the skeleton (εsk) and the porous medium (φ−φ0
φ0

) are weighted by
their respective volume fraction

Similarly

σ = (1− φ0)σsk − φ0p

Let us assume that the matrix forming the solid part is homogeneous:

σsk = Kskεsk ⇒ σ = Ksk (ε− ϕ)− φ0p
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The saturated porous solid

Microporoelasticity

Let us immerse this porous solid in a fluid at pressure p. The external stress is then −p.

σsk = −p ⇒ εsk = −p/Ksk

As the porous solid is subjected to an homogeneous and isotropic stress (homothetic
behavior), we have ε = εsk

φ− φ0 = −φ0p/Ksk

Using now the equation of poroelasticity we obtain:

b = 1− K
Ksk

1
N = b−φ0

Ksk

Florian Osselin MPPS 25 / 45



The saturated porous solid

Effective stress

Biot effective stress
σ + bp = Kε

Terzaghi effective stress
if K � Ksk (the porous solid is made of incompressible grains) b ≈ 1
σ + p = Kε

Soil mechanics
Incompressible grains

Very compactable material
Terzaghi’s effective stress

Rock mechanics
Material already strongly compacted

Biot’s effective stress

Be careful of the sign convention !
In geotechnics, Terzaghi’s effective stress is σ′ = σ − p
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The saturated porous solid

Extraction of gassy sediments: the bubble pressure

When extracting a gassy sediment from the deep sea bed and unloading it under
undrained conditions, one observes that the sample fails at some time during the
unloading process.

Successive unloading of a gassy sediment sample
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The saturated porous solid

Undrained poroelasticity

In the general case, N 6=∞. We then have the following relation:

ϕ = bε+ p
N ⇒

dφρF
ρF

= bdε+ dp
M

using dρF
ρF

= dp
KF

. M is the modulus defined as 1
M = φ0

KF
+ 1

N

For undrained elasticity, we have d (φρF ) = 0
As a result, we obtain the following relation:

dσ = Kudε with Ku = K + b2M

Ku is called the undrained modulus. Ku > K . The presence of the liquid makes the
system stiffer.
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The saturated porous solid

Stability of a soil, effect of interstitial fluid

We are in the case of drained poroelasticity and with Terzaghi’s approximation
Non porous material : σ = Kε
Porous material : σ + p = Kε or in geotechnical convention σ − p = Kε
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The saturated porous solid

Stability of a soil, effect of interstitial fluid

We are in the case of drained poroelasticity and with Terzaghi’s approximation
The effect of water is to displace the Mohr circle to the left: the presence of the water in
the porosity makes the soil more likely to fail.
If you want to build you house there, be careful of the rain !
This calculation is only valid if the soil is saturated and in drained conditions.
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The saturated porous solid

Measuring poroelastic properties

measuring pore pressure, confining
stresses and axial and radial
deformation
use of σ = Kε− bp
σ =(Axial 0 0

0 Confining 0
0 0 Confining

)

Unjacketted experiment: same
variations of pore pressure and
confining pressure
dp = dσ ⇒ σ = K

1+b ε

Florian Osselin MPPS 30 / 45



The saturated porous solid

Measuring poroelastic properties

measuring pore pressure, confining
stresses and axial and radial
deformation
use of σ = Kε− bp
σ =(Axial 0 0

0 Confining 0
0 0 Confining

)

Drained experiment: constant pore
pressure and variations of confining
pressure
p = cte ⇒ σ − σ0 = Kε
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The saturated porous solid

Measuring poroelastic properties

measuring pore pressure, confining
stresses and axial and radial
deformation
use of σ = Kε− bp
σ =(Axial 0 0

0 Confining 0
0 0 Confining

)

Undrained experiment: same
volume of pore fluid. Variations of
pore pressure follow the variations
of confining stress
σ = Kuε Measure of N
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The saturated porous solid

Transport laws in porous media

Micro/macro approach
We have designed an efficient model for a porous volume (pore/throats). One solution to
solve the transport phenomena in poromechanics is to solve Navier/Stockes equation for
on a macroscopic model.

the characteristic lengthscale of an oilfield is km
The characteristic lengthscale of a pore is µm

The number of pores in an oilfield is then 1027 !
We need some macroscopic laws to describe the movement of fluids in the porosity
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The saturated porous solid

Darcy law

Empirical law: 1856 Henri P.G. Darcy (Les Fontaines Publiques de la Ville de Dijon))

q ∝ ∇p
It is also possible to obtain this law through thermodynamics considerations.

The proportional constant depends on the characteristics of the medium and on the
characteristics of the fluid

q = kA
η
∇p

k (m2) is called the intrinsic permeability of the medium which is a constant of the
medium the fluid is newtonian (η = cst). A is the cross section of the porous medium.

Darcy’s velocity q
A is an averaged velocity on all the pores in the REV. It is different than

the microscopic velocity in each pore. If gravity is considered the equation becomes
v = k

η

[
∇p − ρg

]
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The saturated porous solid

Intrinsic permeability

The intrinsic permeability units is m2. Usual unit is D (Darcy) corresponding to
9.868233.10−13 ( ≈ 1 µm2)

Material Intrinsic permeability (D)
Concrete 0.1 mD - 1 nD
Clays 0.1 mD - 10 nD
Bone 10 nD

Granite, Gneiss, Basalts 0.1 mD - 10 nD
Marble 100 nD

Sandstone 10 D - 10 µD
Limestone 1 D - 10 µD

Fine sand, silts and loess 1 D - 10 µD
Gravels and sand 1 kD - 1D

From O. Coussy Mechanics and Physics of Porous Solids Wiley 2010
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The saturated porous solid

Intrinsic permeability
Relation porosity/permeability

Naive case: Bundle of capillary tubes

If we consider that the tubes are parallels, Q = πr4
8η

∆P
L and Darcy’s velocity is

v = r2
8η

∆P
L .

Porosity is: φ = nπr 2 (with n the surface density of pores).

By identification with Darcy’s law we obtain: k = r2φ
8 .

Considering that the pores are oriented in the three direction of space, we can use
an effective porosity φeff = φ

3 and then k = r2φ
24

If the pores are not of the same size, we can use the pore size distribution:
k = φ

24

∫
r 2β(r)dr
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The saturated porous solid

Intrinsic permeability
Relation porosity/permeability

With tortuosity

Porosity becomes φ = nπr 2
√
τ

Darcy’s velocity is v = r2
8η
√
τ

∆P
L

Permeability is then k = φ
24
√
τ

∫
r 2β(r)dr

Permeability is smaller for tortuous pores than for straight capillaries
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The saturated porous solid

Intrinsic permeability
Relation porosity/permeability

Kozeny-Carman equation
We want to get rid of the pore size distribution: we use the specific surface area:
As = 2πnr

√
τ , with n the number of pores.

The porosity is φ = nπr 2
√
τ = rAs

2
The permeability, is then:
k = φ3

K
√
τA2

s
, the constant K is here 6. Experimentally, for a random sphere packing,

K = 5.

This relation is theoretically useful as it is applicable to numerous situations. The
difficulty is to determine the specific surface area.
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The saturated porous solid

Solute transport in porous media
Advection, diffusion and dispersion

Advection characterizes the movement of solute with a flux of the solvent
Jadv = φvCi

Jadv flux of dissolved species, v Darcy’s velocity of the fluid. Ci concentration of species i .

Diffusion characterized the movement of solute through a gradient of concentration
Ji = −D∗i ∇Ci Fick’s law

Ji is the diffusion flux, D∗i m2.s−1 is the diffusion coefficient in porous media.

The presence of the porous space limits the diffusion

Open space: Qi = DiAC0−CL
L

Straight capillaries: Qi = DiφAC0−Cl
L ⇒ effective diffusion coefficient D∗i = φDi

Tortuous capillaries: Qi = Diφ
A

Lw/L
C0−CL
L×Lw/L ⇒ effective diffusion coefficient D∗i = φDi

τ

Other formulations exist taking into account the constrictivity of the pores. . .
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The saturated porous solid

Formation factor and Archie’s law

Initially Archie’s law was derived for the resistivity of a saturated porous medium

Ohm’s law: u = ri AL
Considering that the conductivity of the medium is only governed by water (no clays), we have
rporous = rw
1 = Rw

Rm
A

Apores
Lw
L ⇒

Rm
Rw

= τ
φ

The formation factor is defined as F = τ
φ

Empirically, it has been shown that F = 1
aφm

a a fitted constant and m the cementation exponent.
For sandstone: m ≈ 2
For limestone: 1.7 < m < 4
a usually around 1

Measuring the resistivity of a saturated porous medium gives a measure of the porosity (widely
used in reservoir engineering)

Formation factor for diffusion

The effective diffusion coefficient can also be written as: D∗i = Di
F with F the same formation

factor as for Archie’s law.
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The saturated porous solid

Tortuosity and Tortuosity factor

As many tortuosities as authors

We have defined the tortuosity as τ =
( path within the porous media

geometrical distance

)2. In this case τ > 1

Sometimes, the inverse is used (τ < 1)
Sometimes, the square root is used (or the square root of the inverse)
Some authors use tortuosity for the square root and tortuosity factor for the squared
value (but a in Archie’s law is also called tortuosity factor)
Some authors defined the formation factor as F =

√
τ
φ

(they neglect the change of
cross section when taking into account tortuous systems) and thus D∗i = φ Di√

τ

(same for Archie’s law).

Always check which definition are used !
The one used here ( > 1 and squared) seems to be the more widely used

Florian Osselin MPPS 39 / 45



The saturated porous solid

Solute transport in porous media
Advection, diffusion and dispersion

Mechanical dispersion

Darcy’s velocity is a macroscopic average. Microscopically velocities in the pores are
different because of the different diameters. Mechanical dispersion characterizes the
variation of concentration because of this effect. We have to Fick’s diffusion coefficient a
dispersion coefficient D.

Dh = D∗ + D
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The saturated porous solid

Solute transport in porous media
Advection, diffusion and dispersion

Longitudinal and transverse dispersion
Usually it can be expressed as a function of the velocity:
DL = αLv Longitudinal dispersion
DT = αT v Transverse dispersion

Hydrodynamic dispersion is scale dependent
For large scales (field scale), the Fickian description of dispersion is not valid anymore.

Advection-Dispersion equation
Solute transport can be described with a single equation combining advection and
dispersion

∂(φCi )
∂t = −∇ · (φvCi) +∇ · (D∗i ∇Ci)
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The unsaturated porous solid
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Confined phase transitions
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Experimental considerations
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